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Introduction
Cancer is a worldwide threat, accounting for 7.6 million 
lost lives annually, which is predicted to rise to over 13 
million by 2030. With industrialization, lifestyle changes, 
and the consequent increase in environmental pollutants, 
the cancer rate is rising.1 Chemotherapy, radiotherapy, 
surgery –or a combination of these treatments– are the 
most common treatments against cancers. However, 
these treatment methods have not had acceptable results 
in many patients and have limitations, such as high costs 
for the patient or the healthcare system, life-limiting side 

effects, and inefficiency in treating more advanced cancer 
types.2,3 The ineffectiveness of these treatment methods 
has led researchers to look for novel and more effective 
treatment methods. Hence, numerous approaches in 
immunotherapy have been developed to combat cancer.

The Smac mimetic BV6 has been employed as a selective 
inhibitor of apoptosis protein (IAP) targeting agent. This 
mimetic compound imitates the natural Smac protein and 
effectively induces the degradation of IAPs.4,5 Cancer cells 
escape apoptosis by increasing cIAP1 levels and rely on 
X-linked inhibitor of apoptosis protein (XIAP) expression 
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Abstract
Background: Effective cancer treatments are among the most challenging research goals in 
the field. Cancer cells have diverse characteristics, including the ability to suppress antitumor 
immune responses and resistance to apoptosis. The upregulation of CD73 in cancer cells has 
been suggested in recent studies, promoting proliferation, angiogenesis, and metastasis and 
suppressing immune functions. On the other hand, BV6 can induce apoptosis in cancer cells 
by suppressing apoptosis inhibitors. Therefore, this study aimed to explore the cancer treatment 
potential of BV6 and anti-CD73 agents.
Methods: This study was conducted on cancer cell lines, including CT26 (colon cancer) and 
4T1 (breast cancer). Cancer cells were treated with anti-CD73 small interfering ribonucleic 
acid (siRNA) molecules and BV6 drugs. The effect of treatment on cell viability was evaluated 
using 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyl tetrazolium bromide assay and apoptosis test. In 
addition, the effect of treatment on the expression of target apoptosis-related genes was studied 
with a real-time polymerase chain reaction assay.
Results: It was revealed that delivery of anti-CD73 siRNA molecules along with BV6 to cancer 
cells significantly induced cell death. Although the impact of anti-CD73 siRNA monotherapy 
was non-significant, the combined treatment significantly decreased the expression of genes 
involved in cell survival while increasing the expression of apoptosis-promoting genes.
Conclusion: The findings of this study suggest the combined treatment of cancer cells using anti-
CD73 siRNA molecules and BV6 as an effective anticancer intervention in vitro. Further studies 
should be conducted to determine its effectiveness and safety.
Keywords: BV6, CD73, Cancer immunotherapy, Combination therapy, Small interfering RNA
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for their survival.6,7 Therefore, the antagonism of either 
cIAP1 or XIAP could potentially lead to heightened 
responsiveness toward apoptotic triggers. In addition to 
their direct interaction with and inhibition of caspases, 
IAPs play a crucial role in numerous cellular processes, 
such as the transmission of nuclear factor Kappa B signals. 
Specifically, cIAP1/2 is linked to the tumor necrosis factor 
receptor 1 (TNFR1) complex and governs the intricate 
balance between the canonical and noncanonical nuclear 
factor kappa B signaling pathways.8,9 Earlier investigations 
conducted in our laboratory have demonstrated that 
administering substances that sensitize cell death, 
such as BH3 or Smac mimetics, increases immune cell 
susceptibility.10-12

CD73 is a transmembrane glycoprotein of type I that is 
extensively present on the surfaces of the immune system 
and soft tissue cells.13,14 CD73, functionally speaking, 
acts as a rate-limiting ecto-5’-nucleotidase (NT5E). 
This enzyme, responsible for hydrolyzing AMP, plays a 
crucial role in an ectoenzymatic system that governs the 
transformation of extracellular adenosine triphosphate 
into adenosine.15 The significance of CD73 in regulating 
tumorigenesis, angiogenesis, and metastasis is becoming 
more recognized, particularly in its contribution to breast 
cancer (BC) progression, notably through promoting 
tumor immune evasion.16,17 Consequently, targeting 
CD73 functions pharmacologically is observed as a highly 
promising strategy for treating BC.18-20 CD73 is abundantly 
expressed in various types of cancer as well as by the 
infiltrating immune cells.21 CD73 demonstrates notable 
elevation on the plasma membrane of macrophage cells, 
along with immunosuppressive cells such as myeloid-
derived suppressor and Treg cells. Extensive investigation 
has established a clear association between the increased 
manifestation of CD73 and the proliferation of cancerous 
cells, the advancement of metastasis, and the development 
of fresh blood vessels (angiogenesis).22 In addition, 
tumor cells with high expression of CD73 are resistant to 
chemotherapy and immunotherapy. Targeted inhibition 
of CD73 in cancer cells and its use along with BV6 can 
be a therapeutic approach with a rational strategy.23 This 
study evaluated the in vitro effectiveness and synergistic 
potential of the Smac mimetic BV6 and CD73 inhibition 
on cancer progression and apoptosis.

Methods 
Reagents and Cell Lines
Murine colorectal carcinoma (CT26) and mammary 
carcinoma (4T1) cell lines were purchased from the 
Pasteur Institute of Iran (Tehran, Iran). Both cell lines 
were cultured in RPMI-1640 supplemented with 10% fetal 
bovine serum (Gibco-Invitrogen, USA), 2% L-glutamine, 
100 units/mL penicillin, and 100 mg/mL streptomycin. 
The cells were maintained at 37 °C in the incubator with 5% 
CO2 and 95% humidity. Lipofectamine 2000 transfection 
reagent and 3‐(4,5‐ dimethylthiazol‐2‐yl)‐2,5‐diphenyl 
tetrazolium bromide (MTT) assay kit were purchased 

from Sigma-Aldrich (MO, USA). Anti-CD73 and control 
small interfering ribonucleic acid (siRNAs) were obtained 
from Santa Cruz (CA, USA).

Cytotoxicity Assay 
The MTT assay investigated how BV6 and anti-CD73 
siRNA transfection could affect the cells’ viability. Seeded 
for 24 hours in 96-well plates, the cells were transfected 
with siRNA molecules (60 pm) and BV6 (27 μM for 4T1 
and 31 μM for CT26). The untreated cells were the negative 
control, while dimethyl sulfoxide (0.2%) was the positive 
control. Following a 24- or 48-hour incubation period, 
the cell supernatant was replaced with 100 μL of MTT-
containing medium and incubated for four additional 
hours. Lastly, each well received 100 μL of DMSO for four 
hours. The supernatant was removed after four hours, 
and 150 μL of DMSO was added. This mixture was then 
incubated for 30 minutes. The absorbance was measured 
at 570 nm and 630 nm for the sample test and reference 
wavelength, respectively. 

Real-time Polymerase Chain Reaction 
RNA extraction and cDNA synthesis were performed 
using RNA extraction and cDNA synthesis kits (BioFACT, 
Korea). Target gene expression was then measured and 
amplified using the LightCycler 480 real-time polymerase 
chain reaction (RT-PCR) system (Roche) and the SYBR 
Green RT-PCR master mixture (BioFACT). Standard and 
melting curves were drawn to verify the test’s accuracy. 
The thermocycling condition of RT-PCR included a one-
minute initial denaturation at 95 °C, followed by 40 cycles 
of amplification (including denaturation at 95 °C for 15 
seconds, annealing at 58 °C for 30 seconds, and elongation 
at 72 °C for 35 seconds). Standard and melting curves 
were used to verify the test’s accuracy. The data were 
analyzed using the ΔΔCT method with β-actin as the 
housekeeping gene.

Apoptosis Assay 
The cell Death Detection ELISA kit (Sigma, USA) was 
used to evaluate the impact of anti-CD73 siRNA and BV6 
combination therapy on the apoptosis of cancer cells. In 
brief, cancer cells (3 × 104) were seeded in 48-well plates 
and cultured for 24 hours. Subsequently, cells were treated 
with various therapeutic groups for 48 hours. The cells 
were then detached from the plate and washed twice (at 
1200 rpm for 10 minutes). After one hour of exposure to 
lysis buffer, the cell pellet was centrifuged once more at 
1200 rpm for ten minutes. The cell lysate was utilized for 
the apoptosis assay using the ELISA kit. The enrichment 
of mono- and oligo-nucleosomes in the cytoplasm of the 
apoptotic cells was determined based on the absorbance 
at 405 nm.

Statistical Analysis
The data were statistically analyzed using GraphPad 
Prism (version 6) software. The results were reported as 
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means ± standard deviations (SD), and a P-value of less 
than 0.05 was considered statistically significant.

Results
Silencing CD73 Enhances the Sensitivity of Cancer Cells 
to BV6-Mediated Cytotoxicity
The results of the MTT assay showed that –although 
statistically non-significant– silencing CD73 could 
decrease cancer cell viability to some extent. Meanwhile, 
BV6 significantly induced cell death in both cell lines. The 
combined treatment exhibited the greatest cytotoxicity 
among the therapeutic groups (Figure 1).

CD73 Molecule Expression
The efficacy of siRNA transfection in diminishing CD73 

expression was assessed through RT-PCR analysis. As 
illustrated in Figure 2, the anti-CD73 siRNA notably 
decreased CD73 expression in both cell lines.

Apoptosis and Involved Genes
An ELISA-based apoptosis assay was conducted, and the 
expression of anti-apoptotic BCL-2 and pro-apoptotic 
BIM genes was recorded. The results demonstrated that 
although silencing CD73 could not induce significant 
apoptosis in cancer cells, the treatment of cells with 
BV6 potently enhanced apoptosis in both cell lines. 
However, the highest level of apoptosis was recorded 
through combined treatment (Figure 3a). Moreover, the 
results showed that treatment with anti-CD73 siRNA 
and BV6 decreased the Bcl-2 mRNA level, making cells 

Figure 1. In Vitro, Cytotoxicity Assessed by MTT Assay for 24 Hours. 
Note. An asterisk* denotes a P-value less than 0.05. MTT: 3‐(4,5‐ 
dimethylthiazol‐2‐yl)‐2,5‐diphenyl tetrazolium bromide

Figure 2. Real-time Evaluation of CD73 Expression in Both Cell Lines. Note. 
The asterisk* denotes a P-value less than 0.05

Figure 3. The Effect of Treatment on Apoptosis and the Expression Level of Apoptosis-Related Genes. Note. ELISA: Enzyme-linked immunosorbent assay; PCR: 
Polymerase chain reaction. ELISA-based assay was used to evaluate apoptosis (a). Bcl-2 and Bim mRNA expression levels were evaluated using a real-time PCR 
assay (b and c). Asterisk* represents a P value less than 0.05
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more sensitive to apoptosis (Figure 3b). The combined 
treatment significantly increased BIM gene expression 
(Figure 3c).

Discussion 
Cancer has emerged as a significant challenge within the 
healthcare systems of numerous countries worldwide, 
posing a formidable threat to public health as the second 
leading cause of mortality.24 BV6, a bivalent Smac mimetic, 
has recently been observed to elicit a conformational 
alteration in the structure of cIAP1. This alteration 
facilitates the E3 ubiquitin ligase activity within its RING 
domain, consequently leading to autoubiquitination and 
subsequent proteasomal degradation.25,26 BV6 specifically 
targets the inhibitors of apoptosis (IAP), namely, cIAP1, 
cIAP2, and XIAP, triggering apoptosis in tumor cells.5 
BV6, acting alone, triggers apoptosis, as evident by the 
presence of cleaved caspase-3. Evidence suggests that 
Smac mimetics can also promote necroptosis in certain 
contexts, offering an alternative mechanism of cell death.27 
This study examined the impact of anti-CD73 siRNA-
containing nanoparticles in combination with BV6 on 
cancer cells. Our findings revealed that the utilization 
of siRNA-loaded nanoparticles results in a reduction of 
CD73 gene expression, as well as the expression of genes 
associated with anti-apoptotic proteins, cell proliferation, 
angiogenesis, and metastasis.

Fischer et al first demonstrated the impact of BV6 on 
interleukin (IL)-2-activated expanded natural killer (NK) 
cells in sensitizing the attack on rhabdomyosarcoma 
cells. Additionally, they confirmed the transcriptional 
up-regulation of TNF-related apoptosis-inducing ligand 
(TRAIL) receptors.11 Recent studies have suggested that 
BV6 induces cancer cells’ apoptosis by degrading IAP 
and sensitizing the cells by producing death ligands.28 A 
study by Anna et al represented that Smac mimetics and 
proteasome inhibitors are promising therapeutic strategies 
for primary diffuse large B cell lymphoma, effectively 
triggering cell death through mitochondrial pathways and 
enhancing the sensitivity to treatment.29 In another recent 
study, Smac mimetics have shown the potential to induce 
apoptosis through noncanonical cell death pathways at 
elevated concentrations.30 Some investigators sought to 
inhibit signaling pathways that promote cancer growth, 
such as both IL-6 and its receptor (glycoprotein 130), and 
to synergistically reduce cancer progression in vitro.31

The targeting of IAPs via BV6 could potentially serve 
as an effective strategy to inhibit cancer progression. The 
findings of a study indicated that BV6 triggers apoptosis in 
various human cancer cell types, implying that BV6 causes 
a reduction in cIAP1 and cIAP2 in a dose-dependent 
manner.28 The radiosensitizing properties of BV6 align 
with previous findings that the inhibition of IAPs enhances 
the radiosensitivity of specific types of cancer, such as lung 
cancer.32-34 Additionally, Checinska et al concluded that 
the application of a Smac mimetics results in a notable 
enhancement in cisplatin-induced caspase-3 activity and 

apoptosis in cancer cells in vitro.35

CD73 has complex and context-dependent antitumor 
activity. Upregulated CD73 contributes to immune evasion 
by generating high levels of adenosine, suppressing T cell 
activity, and promoting tumor growth.36 Consequently, 
targeting CD73 with specific inhibitors is being explored 
as a therapeutic strategy to enhance antitumor immunity 
by counteracting the suppressive effects of adenosine on 
the immune system.37,38 The coordinated activity of CD73 
in conjunction with CD39—another ectonucleotidase—
plays a crucial role in regulating the balance between 
extracellular adenosine triphosphate and adenosine, 
thereby maintaining overall immune homeostasis.38 
Numerous studies have now proved the significant 
involvement of CD73 in several aspects of immunity 
and inflammation, including both antitumor immune 
responses and the evasion of immune surveillance by 
tumors. By blocking CD73 through antagonistic chemicals 
or monoclonal antibodies, tumor immunosurveillance 
could be potentially restored, delaying tumor progress 
and metastasis through T-cell- and NK-cell-dependent 
mechanisms, respectively.39 In a study conducted by 
Gao et al, it was demonstrated that CD73 plays a role in 
facilitating the growth and movement of cervical cancer 
cells in humans, regardless of its enzymatic function. In 
line with the results of our study, their findings indicated 
that CD73 could potentially enhance the EGFR/Akt and 
VEGF/Akt pathways, thereby promoting proliferation and 
migration, independently of its enzymatic activity. These 
results offer novel perspectives on the regulatory role of 
CD73 in cancer cells and propose CD73 as a potential 
target for therapeutic interventions in cervical cancer.40

Yang et al found that the activity of CD73 can be 
suppressed by tiamulin, leading to the inhibition of BC 
growth and lung metastasis.41 In another study and a 
mouse rectal cancer model, Tsukui et al reported that the 
inhibition of CD73 amplifies the localized and systemic 
impacts of radiotherapy on coral.42 Our research findings 
support the notion that suppressing the expression of the 
CD73 gene is crucial in regulating the spread and growth of 
rectal cancer cells. Yu et al concluded that CD73 enhances 
the proliferation of human BC cells via the AKT/GSK-3B/
ß-catenin/cyclinD1 signaling cascade,43 which conforms 
to our research findings on the significance of suppressing 
CD73 gene expression in regulating BC progression. Zhou 
et al observed that the upregulation of CD73 enhances 
the ability of T-47D human BC cells to invade and adhere 
to the extracellular matrix (ECM). The findings propose 
that controlled adenosine production, along with changes 
in EGFR and IL-8 expression resulting from CD73 
overexpression, could contribute to the promotion of BC 
metastasis induced by CD73.44

In another recent study, Jin et al explored a new CD73-
targeting antibody-drug conjugate for suppressing lung 
cancer and enhancing the antitumor immune responses.45 
Likewise, Turcotte et al demonstrated that the presence 
of CD73 is linked to an unfavorable prognosis in high-
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grade serous ovarian cancer.46 Miyazaki et al have 
presented evidence suggesting that the presence of tumor 
ECM metalloproteinase inducer and heightened stromal 
CD73 levels are associated with a poor prognosis in 
cases of external auditory canal carcinoma.47 All these 
results corroborate our study findings, highlighting the 
significance of CD73 in tumor immune responses.

Conclusion
Data obtained from all the stages of our study confirm 
the tumor inhibitory effects of the combined targeting of 
CD73 and treatment of BV6. In this study, the researchers 
first targeted this synergistic cycle and used this novel 
therapeutic combination. The development of a powerful 
nanocarrier system with conjugated trimethyl chitosan-
alginate for this compound is another strength of this 
study, which increases the effectiveness of the treatment. 
However, future in vivo studies are required to prove the 
effectiveness of this therapeutic approach.
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